Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tomography ; 10(3): 428-443, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535775

RESUMO

Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its elevated choline (Cho) and decreased N-acetylaspartate (NAA). We present the clinical translatability of spectroscopic imaging with a Cho/NAA ≥ 5x threshold for delineating a biopsy target in a patient diagnosed with non-enhancing glioma. Then, we describe the relationship between the undertreated tumor detected with metabolite imaging and overall survival (OS) from a pilot study of newly diagnosed GBM patients treated with belinostat and chemoradiation. Each cohort (control and belinostat) were split into subgroups using the median difference between pre-radiotherapy Cho/NAA ≥ 2x and the treated T1-weighted contrast-enhanced (T1w-CE) volume. We used the Kaplan-Meier estimator to calculate median OS for each subgroup. The median OS was 14.4 months when the difference between Cho/NAA ≥ 2x and T1w-CE volumes was higher than the median compared with 34.3 months when this difference was lower than the median. The T1w-CE volumes were similar in both subgroups. We find that patients who had lower volumes of undertreated tumors detected via spectroscopy had better survival outcomes.


Assuntos
Glioblastoma , Glioma , Ácidos Hidroxâmicos , Sulfonamidas , Humanos , Projetos Piloto , Análise Espectral , Biópsia , Imageamento por Ressonância Magnética , Colina
2.
Cancers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37568773

RESUMO

Glioblastoma (GBM) has a poor survival rate even with aggressive surgery, concomitant radiation therapy (RT), and adjuvant chemotherapy. Standard-of-care RT involves irradiating a lower dose to the hyperintense lesion in T2-weighted fluid-attenuated inversion recovery MRI (T2w/FLAIR) and a higher dose to the enhancing tumor on contrast-enhanced, T1-weighted MRI (CE-T1w). While there have been several attempts to segment pre-surgical brain tumors, there have been minimal efforts to segment post-surgical tumors, which are complicated by a resection cavity and postoperative blood products, and tools are needed to assist physicians in generating treatment contours and assessing treated patients on follow up. This report is one of the first to train and test multiple deep learning models for the purpose of post-surgical brain tumor segmentation for RT planning and longitudinal tracking. Post-surgical FLAIR and CE-T1w MRIs, as well as their corresponding RT targets (GTV1 and GTV2, respectively) from 225 GBM patients treated with standard RT were trained on multiple deep learning models including: Unet, ResUnet, Swin-Unet, 3D Unet, and Swin-UNETR. These models were tested on an independent dataset of 30 GBM patients with the Dice metric used to evaluate segmentation accuracy. Finally, the best-performing segmentation model was integrated into our longitudinal tracking web application to assign automated structured reporting scores using change in percent cutoffs of lesion volume. The 3D Unet was our best-performing model with mean Dice scores of 0.72 for GTV1 and 0.73 for GTV2 with a standard deviation of 0.17 for both in the test dataset. We have successfully developed a lightweight post-surgical segmentation model for RT planning and longitudinal tracking.

3.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37444634

RESUMO

Despite aggressive treatment, glioblastoma has a poor prognosis due to its infiltrative nature. Spectroscopic MRI-measured brain metabolites, particularly the choline to N-acetylaspartate ratio (Cho/NAA), better characterizes the extent of tumor infiltration. In a previous pilot trial (NCT03137888), brain regions with Cho/NAA ≥ 2x normal were treated with high-dose radiation for newly diagnosed glioblastoma patients. This report is a secondary analysis of that trial where spectroscopic MRI-based biomarkers are evaluated for how they correlate with progression-free and overall survival (PFS/OS). Subgroups were created within the cohort based on pre-radiation treatment (pre-RT) median cutoff volumes of residual enhancement (2.1 cc) and metabolically abnormal volumes used for treatment (19.2 cc). We generated Kaplan-Meier PFS/OS curves and compared these curves via the log-rank test between subgroups. For the subgroups stratified by metabolic abnormality, statistically significant differences were observed for PFS (p = 0.019) and OS (p = 0.020). Stratification by residual enhancement did not lead to observable differences in the OS (p = 0.373) or PFS (p = 0.286) curves. This retrospective analysis shows that patients with lower post-surgical Cho/NAA volumes had significantly superior survival outcomes, while residual enhancement, which guides high-dose radiation in standard treatment, had little significance in PFS/OS. This suggests that the infiltrating, non-enhancing component of glioblastoma is an important factor in patient outcomes and should be treated accordingly.

4.
Tomography ; 9(3): 1052-1061, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37218946

RESUMO

Accurate radiation therapy (RT) targeting is crucial for glioblastoma treatment but may be challenging using clinical imaging alone due to the infiltrative nature of glioblastomas. Precise targeting by whole-brain spectroscopic MRI, which maps tumor metabolites including choline (Cho) and N-acetylaspartate (NAA), can quantify early treatment-induced molecular changes that other traditional modalities cannot measure. We developed a pipeline to determine how spectroscopic MRI changes during early RT are associated with patient outcomes to provide insight into the utility of adaptive RT planning. Data were obtained from a study (NCT03137888) where glioblastoma patients received high-dose RT guided by the pre-RT Cho/NAA twice normal (Cho/NAA ≥ 2x) volume, and received spectroscopic MRI scans pre- and mid-RT. Overlap statistics between pre- and mid-RT scans were used to quantify metabolic activity changes after two weeks of RT. Log-rank tests were used to quantify the relationship between imaging metrics and patient overall and progression-free survival (OS/PFS). Patients with lower Jaccard/Dice coefficients had longer PFS (p = 0.045 for both), and patients with lower Jaccard/Dice coefficients had higher OS trending towards significance (p = 0.060 for both). Cho/NAA ≥ 2x volumes changed significantly during early RT, putting healthy tissue at risk of irradiation, and warranting further study into using adaptive RT planning.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador
5.
Tomography ; 9(2): 633-646, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36961010

RESUMO

Radiation therapy (RT) is a critical part of definitive therapy for pediatric high-grade glioma (pHGG). RT is designed to treat residual tumor defined on conventional MRI (cMRI), though pHGG lesions may be ill-characterized on standard imaging. Spectroscopic MRI (sMRI) measures endogenous metabolite concentrations in the brain, and Choline (Cho)/N-acetylaspartate (NAA) ratio is a highly sensitive biomarker for metabolically active tumor. We provide a preliminary report of our study introducing a novel treatment approach of whole brain sMRI-guided proton therapy for pHGG. An observational cohort (c1 = 10 patients) receives standard of care RT; a therapeutic cohort (c2 = 15 patients) receives sMRI-guided proton RT. All patients undergo cMRI and sMRI, a high-resolution 3D whole-brain echo-planar spectroscopic imaging (EPSI) sequence (interpolated resolution of 12 µL) prior to RT and at several follow-up timepoints integrated into diagnostic scans. Treatment volumes are defined by cMRI for c1 and by cMRI and Cho/NAA ≥ 2x for c2. A longitudinal imaging database is used to quantify changes in lesion and metabolite volumes. Four subjects have been enrolled (c1 = 1/c2 = 3) with sMRI imaging follow-up of 4-18 months. Preliminary data suggest sMRI improves identification of pHGG infiltration based on abnormal metabolic activity, and using proton therapy to target sMRI-defined high-risk regions is safe and feasible.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia com Prótons , Humanos , Criança , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Glioma/diagnóstico por imagem , Glioma/radioterapia , Imageamento por Ressonância Magnética/métodos
6.
Tomography ; 9(1): 362-374, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828381

RESUMO

Glioblastoma (GBM) is a fatal disease, with poor prognosis exacerbated by difficulty in assessing tumor extent with imaging. Spectroscopic MRI (sMRI) is a non-contrast imaging technique measuring endogenous metabolite levels of the brain that can serve as biomarkers for tumor extension. We completed a three-site study to assess survival benefits of GBM patients when treated with escalated radiation dose guided by metabolic abnormalities in sMRI. Escalated radiation led to complex post-treatment imaging, requiring unique approaches to discern tumor progression from radiation-related treatment effect through our quantitative imaging platform. The purpose of this study is to determine true tumor recurrence timepoints for patients in our dose-escalation multisite study using novel methodology and to report on median progression-free survival (PFS). Follow-up imaging for all 30 trial patients were collected, lesion volumes segmented and graphed, and imaging uploaded to our platform for visual interpretation. Eighteen months post-enrollment, the median PFS was 16.6 months with a median time to follow-up of 20.3 months. With this new treatment paradigm, incidence rate of tumor recurrence one year from treatment is 30% compared to 60-70% failure under standard care. Based on the delayed tumor progression and improved survival, a randomized phase II trial is under development (EAF211).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Recidiva Local de Neoplasia , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...